If it's not what You are looking for type in the equation solver your own equation and let us solve it.
50x^2+15x-90=0
a = 50; b = 15; c = -90;
Δ = b2-4ac
Δ = 152-4·50·(-90)
Δ = 18225
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{18225}=135$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(15)-135}{2*50}=\frac{-150}{100} =-1+1/2 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(15)+135}{2*50}=\frac{120}{100} =1+1/5 $
| (n-5)/10=-5 | | 84-2x=30+7 | | X+(2X+140)+z=9480 | | 5(3x+5)+(2+1)=6(x+2)+3(x+10) | | 9x+4=-10x-6 | | 4-7=n-7 | | 2x^2=0.009 | | 10=2-0.25(4z-3) | | 0.7t=0.4+0.8t | | n-19=6-19 | | (-0.65x)+0.45x=5.4 | | 4/3m+1/8m-6=15 | | 16y+45=-3 | | (-3.8x)-5.9x=223.1 | | 2w+2(2w+6)=120 | | 12m+13=5m+24 | | 6v^2+21v-147=0 | | 3y-y+6y=8y | | 15-k=372 | | 1.5n-6.75=12 | | 12m+13=56m+20 | | 9x-(2x+3)=8x-18 | | 10x-23+7x+34=180 | | c/20=18 | | -6=-4k+3+3 | | d^2-4d+5=d | | 3x-7x+2=-3x-3 | | 2x+(x/5)-5=(1/5)+5x | | 3x+2(x-4)=-22 | | 2k^2-13k+12=0 | | -20=v-14 | | 3(-3b+5)-12=9b-3(5b+4) |